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ABSTRACT

The final year of the BeppoSAX mission provided a much needed clue as to the nature of X-ray flashes. The detection of afterglow counterparts and their underlying
hosts provides strong evidence that X-ray flashes and gamma-ray bursts originate from similar sources in cosmologically distant galaxies. These new observations
support results that the prompt emission from X-ray flashes is quantitatively similar to that of classical gamma-ray bursts. Using the best wide-band observations that
are available, we present the latest results in our on-going effort to quantify the similarities and differences in the prompt emission characteristics.

Introduction

The revolution in gamma-ray burst (GRB) astronomy prompted by the
discovery of multiwavelength afterglow counterparts has brought
tremendous progress in understanding the nature of burst progenitors, their
surrounding environments, and host galaxies. Understanding of the
mechanisms giving rise to the prompt burst emission itself, however, is
comparatively confused despite a large amount of observational data. In
this realm, one of the keys to better understanding lies in the identification
of extreme characteristics that differ from those of the bulk ensemble, and
can more severely constrain burst emission models. The goal of this paper
is to investigate one such revealing characteristic — the lower energy form
of the GRB emission process — by comparing prompt GRB properties to
those of the so-called X-ray flashes [1] that could be a related
phenomenon. We build on preliminary work [1,2,3] to quantitatively
compare prompt emission from X-ray flashes (XRFs) and “traditional”
GRBs. The analysis is based on a sample of XRFs that were selected
based on BeppoSAX Wide Field Camera (WFC; 2-26 keV) X-ray
observations, but also detected in 20-300 keV gamma rays through an off-
line scan of BATSE data.

Table 1. GRB-like WFC Transient Observation Summary 21-Apr-91 to 26-May-00

WFC/GRBM WFC Observable | BATSE | BATSE Off-line
Class Detecti with BATSE | Triggers Detect.
GRB 32 21 18 21
XRF 15 9 0 9

Questi 7 4 0 4
Total 54 34 18 34

Observations

Our test sample is based on the events identified, selected, and
“classified” using the BeppoSAX WFC and GRBM instruments. In this
scheme, XRFs are differentiated from GRBs based on the lack of GRBM
(40-400 keV) detection. Using simultaneous BATSE observations we can
reveal wide-band spectral properties and make a more quantitative
comparison between XRFsand “traditional” GRBs.

Apart from observational outages, the WFC and BATSE instruments
operated simultaneously for 3.8 years, ending with the termination of
BATSE science operations on 2000 May 26. For all of the GRB-like
transient events detected by WFC, we performed an off-line search of the
>20 keV BATSE data. Results of the search are listed in Table 1. Note
that not all events were observable with BATSE due to data gaps and
Earth occultations. The result is that all GRB-like WFC events that were
observable with BATSE were detected with >50 in the off-line search.
This list includes four questionable events, three of which are likely long-
duration GRBs (~1000 s), and one is likely a Type I X-ray burst. These
questionable events are excluded from further analysis. For the remaining
21 GRB and 9 XRF (see Fig. 1) we have a complete set of WFC+BATSE
datato use in comparing XRF and GRB properties.
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Fig. 1. BATSE lightcurves for the 9 WFC XRF events observable with BATSE.
Dashed lines indicate background model.

Spectral Analysis

For each of the 30 XRF and GRB events we computed standard
parameters (peak flux, fluence, and duration) using the same processes
developed for the BATSE GRB catalogs. Furthermore, the WFC and
BATSE data were used to jointly estimate the time-averaged 2 keV to 2
MeV spectrum of each event. Four separate spectral models were used in
this process: black body (BB), power law (PL), power law times
exponential (COMP), and Band’s GRB function. Fitting results are listed
in Table 2, and XRF spectra for the Band model are shown in Figure 2.

Based on the chi-squared values for the various models, we make the
following conclusions. First, only one event is consistent with the BB
model. This event is suspected to bea Type I X-ray burst.
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Second, for most GRB events (19 of 21) and three of the XRF events a
single PL model can be rejected with good confidence. This is typical of
GRBs, which usually have strongly curved (i.e., non power-law) spectra.
Finally, the change in chi-squared from a power law to a COMP or Band
model is statistically significant for most of the GRB and XRF events.
This is an important indication that curved spectra are favored for XRFs
just as they are for traditional GRBs.
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Fig. 2. Jointly fit WFC+BATSE spectra of 9 XRFs using Band's GRB spectral model.
XREFs vs. Bright GRBs

To compare the spectral properties of XRFs to those of bright GRBs
we use the 21 WFC-selected GRBs and the Preece et al. (2000) catalog of
156 bright BATSE GRBs [BBG; 4]. Figure 3 compares the distributions
of Band-model spectral parameters for the three event samples (similar
results were obtained with the COM P model).

We use the Kolmogorov-Smirnov test on unbinned data to compare the
different distributions. Statistical significance of observed deviations
between distributions is evaluated through Monte Carlo simulations that
account for the sample sizes as well as the measured statistical
uncertainties in spectral parameters. Results are shown in Table 3. The
Alpha and Beta are inally between XRF and
GRB, but XRFs have significantly lower .

— 15 g saTsE G
T SWRCHR s WG G
2iVrc an

Number of Events

L B T 0 o0 1000 N
Low-energy Index Fy (koY) High-energy Index f
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selected XRF and GRB events compared 1o bright BATSE GRBs.

GRB SPECTRAL PARAMETER COMPARISON

Bru
Samples Probability (Dis > observed)
Compared a ek
XRF+GRBvs, BBG 2102 7.10¢ 1.10°"
XRF vs, BBG 1-107% 21007 1-10°F
CRBvs. BBG 810 6107 2107
XRF vs. GRB  2-107" 2.10°% 8.10°"

XRFs vs. Dim GRBs

The above bright burst comparison ignores the known GRB
hardness—intensity correlation. It is important to compare XRFs to weak
GRBs that have similar (gamma-ray) brightness. To do this we use the
Mallozzi et al. (1998) sample of 623 BATSE bursts that were fit using the
Band spectral model [MAL; 5]. Figure 4 compares these bursts with the
WEFC-selected events. The hardness—intensity correlation is evident in
WFC GRBs and MAL GRBs.
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Fig. 4. Time-average Band-model parameters of WFC-selected events compared
10 weak BATSE GRBs from [5]. First plot include short and long bursts. Other
plots include only long (T50 > 1 ) bursts.

To compare XRFs and dim GRBs we first modeled the hardness-
intensity (E,. vs. peak flux) correlation using a power-law fit to binned
GRB data (including statistical uncertainties). The power-law was then
extrapolated into the intensity regime of the XRFs (see Figure 5) assuming
various models for the GRB intensity (LogN-LogP) distribution. Finally,
the K-S test was used to compare the unbinned XRF data to the
extrapolated GRB £, distribution. This analysis indicates that (within
sizable uncertainties) XRFs and extrapolated dim WFC GRBs are
statistically consistent, with chance K-S probability Py ~ 0.2-0.4
(depending on the choice of LogN-LogP). The extrapolated BATSE
GRBs, however, have significantly larger £, than XRFs.
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Fig. 5. Long-duration GRB hardness-intensity data (left) binned and fit to a power law
(center). The rightmost plot shows GRB data [5; MAL]. The brown curve
indicates the effect of a simulated WFC selection bias on the power-law correlation.

The above comparison ignores selection biases between WFC and
BATSE samples. Starting with the BATSE power-law fit, we simulated
the effect of the WFC selection bias assuming (1) Alpha and Beta are
independent of burst intensity and described by the BBG distribution, (2)
random locations over the WFC field of view, and (3) the approximate
WEC trigger criteria. The effect of this simulated bias on the power-law
hardness—intensity correlation is indicated on the right-most plot in Figure
5. Including this bias, the £, distribution of XRFs and extrapolated
BATSE-selected dim GRBs are statistically consistent, with Py ~ 0.1
(depending on the choice of LogN-LogP).

Conclusion

While XRF-like events have been detected by Ginga in the past and
HETE-II at present, the WFC+BATSE sample offers the greatest broad-
band sensitivity. The nine jointly observed XRFs therefore represent a
unique resource for comparing prompt XRF and GRB behavior.

Our results indicate that the prompt, broad-band emission from XRFs
is quantitatively consistent with that expected from weak, long-duration,
traditional GRBs. Combined with their similar temporal properties, this
strongly suggests that XRFs and long GRBs are produced by a continuous
variation the same phenomenon. Furthermore, XRFs are the majority
component (>50%) of the combined XRF+GRB population when selection
biases areincluded.
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